

# **ELK Biotechnology**

For research use only.

# Sorbitol dehydrogenase Assay Kit Instruction

(BC051 50T/48S)

#### - Assay significance

SDH (EC 1.1.1.14) catalyzes the dehydrogenation of Sorbitol to fructose, which is one of the key enzymes regulating sorbitol content in organisms.

#### 二、Assay principle

SDH catalyzes the dehydrogenation of Sorbitol to fructose and the reduction of NAD + to Nadh. SDH activity can be calculated by measuring the increasing rate of absorbance at  $340 \, \mathrm{nm}$ .

#### 三、Reagents and tools required but not supplied

- 1 Visible spectrophotometer, Activity (Wavelength: 545nm)
- 2) High speed refrigerated centrifuge and tubes, Water bath tank
- (3) Adjustable pipette (5-1000μl) and Tips
- 4 1mL quartz cuvettes, Mortar
- (5) Ice and Distilled water

#### 四、Reagents composition: (50T/48S)

Extract Solution: Liquid 60ml×1 bottle, store at 4°C;

**Reagent 1**: Liquid 20ml×1 bottle, store at 4°C;

**Reagent 2**: Powder×1 bottle,store at 4°C;Before use, add 15ml distilled water and dissolve the mixture thoroughly,store the remaining reagents at 4°C.

**Reagent 3**: Powder×1 bottle,store at -20°C;Before use, add 15ml distilled water and dissolve the mixture thoroughly,store the remaining reagents at -20°C.

#### 五、Operation Procedure:

#### 1, Extraction of crude enzyme:

(1) Bacteria, Cells: Collect the bacteria or cells into the centrifuge tube, and then discard the supernatant after centrifugation. According to the number of bacteria or cells
(10<sup>4</sup>): Extract Solution volume (ml)500 ~ 1000:1 ratio (5 million bacteria or cells are



## **ELK Biotechnology**

## For research use only.

recommended to add 1ml extract solution), the ice bath ultrasonic wave was broken (20% power or 200W, ultrasonic 3s, interval 10s, repeat 30 times), and 8000g centrifuged at 4°C for 10min, take the supernatant and placed on the ice to be tested.

- (2) **Tissue:** According to the Tissue mass (g): the volume ratio of extract solution 1:5 ~ 10(about 0.1g tissue is recommended, and add 1mLextract solution), ice bath homogenization is carried out. 8000g centrifuged at 4°C for 10min,take the supernatant and placed on ice for test.
- (3) Serum (Plasma) and other fluids sample: Direct test.

#### 2. Operation table:

| Reagent                                                                                | Assay |
|----------------------------------------------------------------------------------------|-------|
| Reagent 1 (µL)                                                                         | 400   |
| Reagent 2 (µL)                                                                         | 300   |
| Reagent 3 (µL)                                                                         | 300   |
| Mix well and incubate at 37 °C (Mammal) or 25 °C (other species) for 5 minutes         |       |
| Sample (μL)                                                                            | 50    |
| Add the above reagents to 1ml quartz colorimetric dish in turn Timing when you add the |       |

Add the above reagents to 1ml quartz colorimetric dish in turn; Timing when you add the sample, recorde the initial absorbance  $A_1$  at 20s and  $A_2$  at 140s, calculate  $\triangle A = A_2 - A_1$ .

#### 六、Calculate:

#### 1, SDH in serum (Plasma)

Unit definition: Production of 1nmol NADH per milliliter of serum (Plasma) per minute was defined as an enzyme activity unit.

$$\frac{SDH \text{ Activity}}{\text{(U/ml)}} = \frac{\triangle A \times V_{\text{Total Volume}} \times 10^9}{\text{(} \varepsilon \times \text{d}\text{)}} \div V_{\text{Sample}} \div T = 1688 \times \triangle A$$

#### 2, SDH in tissue, bacteria or cells

#### (1), Calculated by sample protein concentration

Unit definition: Production of 1nmol NADH per mg protein per minute was defined as an enzyme activity unit.

$$\frac{SDH \quad \text{Activity}}{(\text{U/mgprot}\,)} = \frac{\triangle A \times V_{\text{Total Volume}} \times 10^9}{(\varepsilon \times \text{d}\,)} \div (V_{\text{Sample}} \times \text{Cpr}\,) \div T = 1688 \times \triangle A \div Cpr$$

### (2). Calculated by sample fresh weight



# ELK Biotechnology

## For research use only.

Unit definition: Production of 1nmol NADH per gram tissue per minute was defined as an enzyme activity unit.

$$\begin{array}{l} \textit{SDH} \;\; \textit{Activity} \\ (\; \mathbb{U}/\mathsf{g} \;\; \textit{Tissue} \;) = \frac{\Delta A \times V_{\text{Total Volume}} \times 10^9}{(\; \mathcal{E} \times \mathsf{d} \;)} \div (\; V_{\text{Sample}} \times \frac{\mathbb{W}}{V_{\text{Total Sample}}}) \div \; T = \; 1688 \!\!\!\times \Delta A \div \frac{\mathbb{W}}{V_{\text{Total Sample}}} \\ \end{array}$$

#### (3), Calculated by Cells or Bacteria density

**Unit definition:** Production of 1nmol NADH per 104 bacteria or cells per minute was defined as an enzyme activity unit.

 $V_{sample}$ : Volume of supernatant added to reaction system (mL) ,0.05mL

 $V_{Total \, samples}$ : The volume of the supernatant, 1mL;

 $V_{Total\ volume}$ : Total volume of reaction system (L) ,1.05mL;

T: Reaction time (min),2min

ε: Molar absorptivity of NADH,6.22×10<sup>3</sup> L/mol/cm;

d:light path (cm),1cm

**W**: Sample quality, (g)

Cpr: Sample protein concentration,mg/mL

500: Bacteria or cell numbers,5 million

E: elkbio@elkbiotech.com